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More least squares

Solving the least squares optimization problem:

minimize
x

‖Ax − b‖2

Is equivalent to solving the normal equations:

ATA x̂ = ATb

� If ATA is invertible (A has linearly independent columns)

x̂ = (ATA)−1ATb

� A† := (ATA)−1AT is called the pseudoinverse of A.
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Example: moving average model

� We are given a time series of input data u1, u2, . . . , uT
and output data y1, y2, . . . , yT . Example:

� A “moving average” model with window size k assumes
each output is a weighted combination of k previous inputs:

yt ≈ w1ut + w2ut−1 + · · ·+ wkut−k+1 for all t

� find weights w1, . . . ,wk that best agree with the data.
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Example: moving average model

� Moving average model:

yt ≈ w1ut + w2ut−1 + w3ut−2 for all t

� Writing all the equations (e.g. k = 3):
y1
y2
y3
...
yT

 ≈

u1 0 0
u2 u1 0
u3 u2 u1
...

...
...

uT uT−1 uT−2


w1

w2

w3



� Solve least squares problem! Moving Average.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Moving Average.ipynb


Minimum-norm least squares
Underdetermined case: A ∈ Rm×n is a wide matrix
(m ≤ n), so Ax = b generally has infinitely many solutions.

� The set of solutions of Ax = b forms an affine subspace.
Recall: if Ay = b and Az = b then A(αy + (1− α)z) = b.

� One possible choice: pick the x with smallest norm.
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� Insight: The optimal x̂ must satisfy Ax̂ = b and
x̂T(x̂ − w) = 0 for all w satisfying Aw = b.
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Minimum-norm least squares

� We want: x̂T(x̂ − w) = 0 for all w such that Aw = b.

� We also know that Ax̂ = b. Therefore: A(x̂ − w) = 0.

In other words:

x̂ ⊥ (x̂ − w) and (x̂ − w) ⊥ (all rows of A)

Therefore, x̂ is a linear combination of the rows of A.

Stated another way, x̂ = ATz for some z .

� Therefore, we must find z and x̂ such that:

Ax̂ = b and ATz = x̂

(this also follows from R(A)⊥ = N (AT))
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Minimum-norm least squares
Theorem: If there exists x̂ and z that satisfy Ax̂ = b and
ATz = x̂ , then x̂ is a solution to the minimum-norm problem

minimize
x

‖x‖2

subject to: Ax = b

Proof: Suppose Ax̂ = b and ATz = x̂ . For any x that
satisfies Ax = b, we have:

‖x‖2 = ‖x − x̂ + x̂‖2

= ‖x − x̂‖2 + ‖x̂‖2 + 2x̂T(x − x̂)

= ‖x − x̂‖2 + ‖x̂‖2 + 2zTA(x − x̂)

= ‖x − x̂‖2 + ‖x̂‖2

≥ ‖x̂‖2
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Minimum-norm least squares
Solving the minimum-norm least squares problem:

minimize
x

‖x‖2

subject to: Ax = b

Is equivalent to solving the linear equations:

Ax̂ = b and ATz = x̂ =⇒ AATz = b

� If AAT is invertible (A has linearly independent rows)

x̂ = AT(AAT)−1b

� A† := AT(AAT)−1 is also called the pseudoinverse of A.
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Equality-constrained least squares

A more general optimization problem:

minimize
x

‖Ax − b‖2

subject to: Cx = d

(Equality-constrained least squares)

� If C = 0, d = 0, we recover ordinary least squares

� If A = I , b = 0, we recover minimum-norm least squares
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Equality-constrained least squares

Solving the equality-constrained least squares problem:

minimize
x

‖Ax − b‖2

subject to: Cx = d

Is equivalent to solving the linear equations:

ATAx̂ + CTz = ATb and Cx̂ = d
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Equality-constrained least squares

Proof: Suppose x̂ and z satisfy ATAx̂ + CTz = ATb and
Cx̂ = d . Let x be any other point satisfying Cx = d . Then,

‖Ax − b‖2 = ‖A(x − x̂) + (Ax̂ − b)‖2

= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2 + 2(x − x̂)TAT(Ax̂ − b)

= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2 − 2(x − x̂)TCTz

= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2 − 2(Cx − Cx̂)Tz

= ‖A(x − x̂)‖2 + ‖Ax̂ − b‖2

≥ ‖Ax̂ − b‖2

Therefore x̂ is an optimal choice.
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Recap so far

Several different variants of least squares problems are
easy to solve in the sense that they are equivalent to
solving systems of linear equations.

Least squares

min
x
‖Ax − b‖2

Minimum-norm

min
x
‖x‖2

s.t. Ax = b

Equality constrained

min
x
‖Ax − b‖2

s.t. Cx = d
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Optimal tradeoffs

We often want to optimize several different objectives
simultaneously, but these objectives are conflicting.

� risk vs expected return (finance)

� power vs fuel economy (automobiles)

� quality vs memory (audio compression)

� space vs time (computer programs)

� mittens vs gloves (winter)
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Optimal tradeoffs

� Suppose J1 = ‖Ax − b‖2 and J2 = ‖Cx − d‖2.

� We would like to make both J1 and J2 small.

� A sensible approach: solve the optimization problem:

minimize
x

J1 + λJ2

where λ > 0 is a (fixed) tradeoff parameter.

� Then tune λ to explore possible results.

I When λ→ 0, we place more weight on J1
I When λ→∞, we place more weight on J2
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Optimal tradeoffs

This problem is also equivalent to solving linear equations!

J1 + λJ2 = ‖Ax − b‖2 + λ‖Cx − d‖2

=

∥∥∥∥[ Ax − b√
λ(Cx − d)

]∥∥∥∥2
=

∥∥∥∥[ A√
λC

]
x −

[
b√
λd

]∥∥∥∥2
� An ordinary least squares problem!

� Equivalent to solving

(ATA + λCTC ) x̂ = (ATb + λCTd)
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Tradeoff analysis

1. Choose values for λ (usually log-spaced). A useful
command: lambda = logspace(p,q,n) produces n
points logarithmically spaced between 10p and 10q.

2. For each λ value, find x̂λ that minimizes J1 + λJ2.

3. For each x̂λ, also compute the corresponding Jλ1 and Jλ2 .

4. Plot (Jλ1 , J
λ
2 ) for each λ and connect the dots.

J1

J2 λ→ 0

λ→∞
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Pareto curve

J1

J2 λ→ 0

λ→∞

candidate point

better J1
better J2

worse J1
worse J2

worse J1
better J2

better J1
worse J2
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Pareto curve

J1

J2 λ→ 0

λ→∞

feasible, but
strictly suboptimal

infeasible

P
areto-optimal points
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Example: hovercraft

We are in command of a hovercraft. We are given a set of k
waypoint locations and times. The objective is to hit the
waypoints at the prescribed times while minimizing fuel use.

Goal is to choose appropriate thruster inputs at each instant.
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Example: hovercraft

We are in command of a hovercraft. We are given a set of k
waypoint locations and times. The objective is to hit the
waypoints at the prescribed times while minimizing fuel use.

� Discretize time: t = 0, 1, 2, . . . ,T .

� Important variables: position xt , velocity vt , thrust ut .

� Simplified model of the dynamics:

xt+1 = xt + vt

vt+1 = vt + ut
for t = 0, 1, . . . ,T − 1

� We must choose u0, u1, . . . , uT .

� Initial position and velocity: x0 = 0 and v0 = 0.

� Waypoint constraints: xti = wi for i = 1, . . . , k .

� Minimize fuel use: ‖u0‖2 + ‖u1‖2 + · · ·+ ‖uT‖2
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Example: hovercraft

First model: hit the waypoints exactly

minimize
xt ,vt ,ut

T∑
t=0

‖ut‖2

subject to: xt+1 = xt + vt for t = 0, 1, . . . ,T − 1

vt+1 = vt + ut for t = 0, 1, . . . ,T − 1

x0 = v0 = 0

xti = wi for i = 1, . . . , k

Julia model: Hovercraft.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Hovercraft.ipynb


Example: hovercraft

Second model: allow waypoint misses

minimize
xt ,vt ,ut

T∑
t=0

‖ut‖2 + λ
k∑

i=1

‖xti − wi‖2

subject to: xt+1 = xt + vt for t = 0, 1, . . . ,T − 1

vt+1 = vt + ut for t = 0, 1, . . . ,T − 1

x0 = v0 = 0

� λ controls the tradeoff between making u small and hitting
all the waypoints.
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