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More least squares

Solving the least squares optimization problem:

minimize ||Ax — b|?
X

Is equivalent to solving the normal equations:

ATAR = ATh

e If ATA is invertible (A has linearly independent columns)
%= (ATA)'ATh
e Al := (ATA)7'AT is called the pseudoinverse of A.
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Example: moving average model

e We are given a time series of input data uy, up, ..., ur
and output data yi, o, ..., yr. Example:

— inputu [
— outputy

0 2‘0 4‘0 éO éO 100
e A “moving average" model with window size k assumes
each output is a weighted combination of k previous inputs:

Y = Wil + Wols_ 1 + -+ + Wil 1 for all t

o find weights wy, ..., w, that best agree with the data.
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Example: moving average model

e Moving average model:

Ye & Wil + Wolly_1 + W3l >

e Writing all the equations (e.g. k = 3):
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for all t
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e Solve least squares problem! Moving Average.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Moving Average.ipynb

Minimum-norm least squares

Underdetermined case: A € R™*" is a wide matrix
(m < n), so Ax = b generally has infinitely many solutions.

e The set of solutions of Ax = b forms an affine subspace.
Recall: if Ay = b and Az = b then A(ay + (1 —a)z) = b.

e One possible choice: pick the x with smallest norm.
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e Insight: The optimal X must satisfy AX = b and

£T(X — w) = 0 for all w satisfying Aw = b.
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Minimum-norm least squares

e We want: XT(X — w) =0 for all w such that Aw = b.

e We also know that AX = b. Therefore: A(X — w) = 0.

In other words:
XL (x—-w) and (X — w) L (all rows of A)

Therefore, X is a linear combination of the rows of A.
Stated another way, X = ATz for some z.
e Therefore, we must find z and X such that:

AX=b and ATz=23%

(this also follows from R(A)t = N(AT))

9-6



Minimum-norm least squares

Theorem: If there exists X and z that satisfy AXx = b and
ATz = &, then % is a solution to the minimum-norm problem

minimize ||x||?
X

subject to: Ax=0b

Proof: Suppose A% = b and ATz = %. For any x that
satisfies Ax = b, we have:

Il = llx — % + ]
=[x = 2|2 + [IR]]* + 28T (x — %)
=[x = 2| + [I%]]* + 22" A(x — %)
= [lx — 2|1 + [I%]*

> |I%||*
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Minimum-norm least squares

Solving the minimum-norm least squares problem:
minimize  ||x]|?
subject to: Ax=0b
Is equivalent to solving the linear equations:
AR =b and ATz=% = AA'z=0b
e If AAT is invertible (A has linearly independent rows)
%= AT (AAT) b

e AT:= AT(AAT)"!is also called the pseudoinverse of A.
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Equality-constrained least squares

A more general optimization problem:

minimize ||Ax — b||?
X

subject to: Cx =d

(Equality-constrained least squares)

e If C =0, d =0, we recover ordinary least squares

e If A=, b= 10, we recover minimum-norm least squares
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Equality-constrained least squares

Solving the equality-constrained least squares problem:
. . . 2
minimize ||Ax — b||
X
subject to: Cx =d
Is equivalent to solving the linear equations:

ATAX+C'z=A"b and Cx=d



Equality-constrained least squares

Proof: Suppose % and z satisfy ATAX + C'z = ATh and
Cx = d. Let x be any other point satisfying Cx = d. Then,

|Ax — b||* = [|A(x — ) + (A% — b)||?
= [|A(x = R)[I? + [|A% — b]|* + 2(x — R)TAT(A% — b)
JA(x = R)[|? + |A% — b||> = 2(x = %)TC"z
|A(x — X)|I> + || A% — b||> —2(Cx — CX)'z
[A(x = %)[|* + [| A% — b]|?
> ||A% — b||?

Therefore X is an optimal choice.



Recap so far

Several different variants of least squares problems are
easy to solve in the sense that they are equivalent to
solving systems of linear equations.

Least squares Minimum-norm Equality constrained
min ||Ax — b||? min ||x||? min  ||Ax — b||?
X X X
st. Ax=5>b st. &k=d



Optimal tradeoffs

We often want to optimize several different objectives
simultaneously, but these objectives are conflicting.

risk vs expected return (finance)

power vs fuel economy (automobiles)

quality vs memory (audio compression)

space vs time (computer programs)

mittens vs gloves (winter)



Optimal tradeoffs

Suppose J; = ||Ax — b||? and /= ||Cx — d||*.

We would like to make both J; and J, small.

A sensible approach: solve the optimization problem:

minimize J; + A\,

where \ > 0 is a (fixed) tradeoff parameter.

Then tune A to explore possible results.

» When A — 0, we place more weight on J;

» When A\ — o0, we place more weight on J,



Optimal tradeoffs

This problem is also equivalent to solving linear equations!

h+ b= \Ax—b||2+)\||Cx—d||2
AX — 2
Cx—
B [ b
B \/XC T |Vad

e An ordinary least squares problem!

2

e Equivalent to solving

(ATA+XCTC)% = (ATh+ \CTd)



Tradeoff analysis

1. Choose values for A\ (usually log-spaced). A useful

command: lambda

= logspace(p,q,n) produces n

points logarithmically spaced between 107 and 109.

2. For each A value, find X, that minimizes J; + A .

3. For each £, also compute the corresponding J;' and J3.

4. Plot (J}, J2) for each X and connect the dots.
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Pareto curve
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Example: hovercraft

We are in command of a hovercraft. We are given a set of k
waypoint locations and times. The objective is to hit the
waypoints at the prescribed times while minimizing fuel use.
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Goal is to choose appropriate thruster inputs at each instant.



Example: hovercraft

We are in command of a hovercraft. We are given a set of k
waypoint locations and times. The objective is to hit the
waypoints at the prescribed times while minimizing fuel use.
e Discretize time: t=0,1,2,...,T.

Important variables: position x;, velocity v;, thrust u;.

Simplified model of the dynamics:

Xer1 = X¢ + V,
e fort=0,1,....,T—1
Vit = Ve + Ug

e We must choose ug, uq, ..., ur.

e |nitial position and velocity: x = 0 and vy = 0.
e Waypoint constraints: x;, = w; for i =1,..., k.
e Minimize fuel use: ||uol]® + [[u1]|® + - - + |lur]]?



Example: hovercraft

First model: hit the waypoints exactly

Julia model: Hovercraft.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Hovercraft.ipynb

Example: hovercraft

Second model: allow waypoint misses

e )\ controls the tradeoff between making u small and hitting
all the waypoints.

9-22



	Equality constraints and tradeoffs
	More least squares
	Example: moving average model
	Minimum-norm least squares
	Equality-constrained least squares
	Optimal tradeoffs
	Example: hovercraft


