9. Equality constraints and tradeoffs

- More least squares
- Example: moving average model
- Minimum-norm least squares
- Equality-constrained least squares
- Optimal tradeoffs
- Example: hovercraft

More least squares

Solving the least squares optimization problem:

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}
$$

Is equivalent to solving the normal equations:

$$
A^{\top} A \hat{x}=A^{\top} b
$$

- If $A^{\top} A$ is invertible (A has linearly independent columns)

$$
\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

- $A^{\dagger}:=\left(A^{\top} A\right)^{-1} A^{\top}$ is called the pseudoinverse of A.

Example: moving average model

- We are given a time series of input data $u_{1}, u_{2}, \ldots, u_{T}$ and output data $y_{1}, y_{2}, \ldots, y_{T}$. Example:

- A "moving average" model with window size k assumes each output is a weighted combination of k previous inputs:

$$
y_{t} \approx w_{1} u_{t}+w_{2} u_{t-1}+\cdots+w_{k} u_{t-k+1} \quad \text { for all } t
$$

- find weights w_{1}, \ldots, w_{k} that best agree with the data.

Example: moving average model

- Moving average model:

$$
y_{t} \approx w_{1} u_{t}+w_{2} u_{t-1}+w_{3} u_{t-2} \quad \text { for all } t
$$

- Writing all the equations (e.g. $k=3$):

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{T}
\end{array}\right] \approx\left[\begin{array}{ccc}
u_{1} & 0 & 0 \\
u_{2} & u_{1} & 0 \\
u_{3} & u_{2} & u_{1} \\
\vdots & \vdots & \vdots \\
u_{T} & u_{T-1} & u_{T-2}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]
$$

- Solve least squares problem! Moving Average.ipynb

Minimum-norm least squares

Underdetermined case: $A \in \mathbb{R}^{m \times n}$ is a wide matrix
($m \leq n$), so $A x=b$ generally has infinitely many solutions.

- The set of solutions of $A x=b$ forms an affine subspace. Recall: if $A y=b$ and $A z=b$ then $A(\alpha y+(1-\alpha) z)=b$.
- One possible choice: pick the x with smallest norm.

- Insight: The optimal \hat{x} must satisfy $A \hat{x}=b$ and $\hat{x}^{\top}(\hat{x}-w)=0$ for all w satisfying $A w=b$.

Minimum-norm least squares

- We want: $\hat{x}^{\top}(\hat{x}-w)=0$ for all w such that $A w=b$.
- We also know that $A \hat{x}=b$. Therefore: $A(\hat{x}-w)=0$. In other words:

$$
\hat{x} \perp(\hat{x}-w) \quad \text { and } \quad(\hat{x}-w) \perp(\text { all rows of } A)
$$

Therefore, \hat{x} is a linear combination of the rows of A.
Stated another way, $\hat{x}=A^{\top} z$ for some z.

- Therefore, we must find z and \hat{x} such that:

$$
A \hat{x}=b \quad \text { and } \quad A^{\top} z=\hat{x}
$$

(this also follows from $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{\top}\right)$)

Minimum-norm least squares

Theorem: If there exists \hat{x} and z that satisfy $A \hat{x}=b$ and $A^{\top} z=\hat{x}$, then \hat{x} is a solution to the minimum-norm problem

$\underset{x}{\operatorname{minimize}}\|x\|^{2}$

subject to: $A x=b$

Proof: Suppose $A \hat{x}=b$ and $A^{\top} z=\hat{x}$. For any x that satisfies $A x=b$, we have:

$$
\begin{aligned}
\|x\|^{2} & =\|x-\hat{x}+\hat{x}\|^{2} \\
& =\|x-\hat{x}\|^{2}+\|\hat{x}\|^{2}+2 \hat{x}^{\top}(x-\hat{x}) \\
& =\|x-\hat{x}\|^{2}+\|\hat{x}\|^{2}+2 z^{\top} A(x-\hat{x}) \\
& =\|x-\hat{x}\|^{2}+\|\hat{x}\|^{2} \\
& \geq\|\hat{x}\|^{2}
\end{aligned}
$$

Minimum-norm least squares

Solving the minimum-norm least squares problem:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|x\|^{2} \\
\text { subject to: } & A x=b
\end{aligned}
$$

Is equivalent to solving the linear equations:

$$
A \hat{x}=b \quad \text { and } \quad A^{\top} z=\hat{x} \quad \Longrightarrow \quad A A^{\top} z=b
$$

- If $A A^{\top}$ is invertible (A has linearly independent rows)

$$
\hat{x}=A^{\top}\left(A A^{\top}\right)^{-1} b
$$

- $A^{\dagger}:=A^{\top}\left(A A^{\top}\right)^{-1}$ is also called the pseudoinverse of A.

Equality-constrained least squares

A more general optimization problem:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A x-b\|^{2} \\
\text { subject to: } & C x=d
\end{aligned}
$$

(Equality-constrained least squares)

- If $C=0, d=0$, we recover ordinary least squares
- If $A=l, b=0$, we recover minimum-norm least squares

Equality-constrained least squares

Solving the equality-constrained least squares problem:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|A x-b\|^{2} \\
\text { subject to: } & C x=d
\end{aligned}
$$

Is equivalent to solving the linear equations:

$$
A^{\top} A \hat{x}+C^{\top} z=A^{\top} b \quad \text { and } \quad C \hat{x}=d
$$

Equality-constrained least squares

Proof: Suppose \hat{x} and z satisfy $A^{\top} A \hat{x}+C^{\top} z=A^{\top} b$ and $C \hat{x}=d$. Let x be any other point satisfying $C x=d$. Then,

$$
\begin{aligned}
\|A x-b\|^{2} & =\|A(x-\hat{x})+(A \hat{x}-b)\|^{2} \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2}+2(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b) \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2}-2(x-\hat{x})^{\top} C^{\top} z \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2}-2(C x-C \hat{x})^{\top} z \\
& =\|A(x-\hat{x})\|^{2}+\|A \hat{x}-b\|^{2} \\
& \geq\|A \hat{x}-b\|^{2}
\end{aligned}
$$

Therefore \hat{x} is an optimal choice.

Recap so far

Several different variants of least squares problems are easy to solve in the sense that they are equivalent to solving systems of linear equations.

Least squares

$$
\min _{x}\|A x-b\|^{2}
$$

Minimum-norm

$$
\begin{array}{cl}
\min _{x} & \|x\|^{2} \\
\text { s.t. } & A x=b
\end{array}
$$

Equality constrained

$$
\begin{array}{cl}
\min _{x} & \|A x-b\|^{2} \\
\text { s.t. } & C x=d
\end{array}
$$

Optimal tradeoffs

We often want to optimize several different objectives simultaneously, but these objectives are conflicting.

- risk vs expected return (finance)
- power vs fuel economy (automobiles)
- quality vs memory (audio compression)
- space vs time (computer programs)
- mittens vs gloves (winter)

Optimal tradeoffs

- Suppose $J_{1}=\|A x-b\|^{2}$ and $J_{2}=\|C x-d\|^{2}$.
- We would like to make both J_{1} and J_{2} small.
- A sensible approach: solve the optimization problem:

$$
\underset{x}{\operatorname{minimize}} J_{1}+\lambda J_{2}
$$

where $\lambda>0$ is a (fixed) tradeoff parameter.

- Then tune λ to explore possible results.
- When $\lambda \rightarrow 0$, we place more weight on J_{1}
- When $\lambda \rightarrow \infty$, we place more weight on J_{2}

Optimal tradeoffs

This problem is also equivalent to solving linear equations!

$$
\begin{aligned}
J_{1}+\lambda J_{2} & =\|A x-b\|^{2}+\lambda\|C x-d\|^{2} \\
& =\left\|\left[\begin{array}{c}
A x-b \\
\sqrt{\lambda}(C x-d)
\end{array}\right]\right\|^{2} \\
& =\left\|\left[\begin{array}{c}
A \\
\sqrt{\lambda} C
\end{array}\right] x-\left[\begin{array}{c}
b \\
\sqrt{\lambda} d
\end{array}\right]\right\|^{2}
\end{aligned}
$$

- An ordinary least squares problem!
- Equivalent to solving

$$
\left(A^{\top} A+\lambda C^{\top} C\right) \hat{x}=\left(A^{\top} b+\lambda C^{\top} d\right)
$$

Tradeoff analysis

1. Choose values for λ (usually log-spaced). A useful command: lambda $=\operatorname{logspace}(\mathrm{p}, \mathrm{q}, \mathrm{n})$ produces n points logarithmically spaced between 10^{p} and 10^{q}.
2. For each λ value, find \hat{x}_{λ} that minimizes $J_{1}+\lambda J_{2}$.
3. For each \hat{x}_{λ}, also compute the corresponding J_{1}^{λ} and J_{2}^{λ}.
4. Plot $\left(J_{1}^{\lambda}, J_{2}^{\lambda}\right)$ for each λ and connect the dots.

Pareto curve

Pareto curve

Example: hovercraft

We are in command of a hovercraft. We are given a set of k waypoint locations and times. The objective is to hit the waypoints at the prescribed times while minimizing fuel use.

Goal is to choose appropriate thruster inputs at each instant.

Example: hovercraft

We are in command of a hovercraft. We are given a set of k waypoint locations and times. The objective is to hit the waypoints at the prescribed times while minimizing fuel use.

- Discretize time: $t=0,1,2, \ldots, T$.
- Important variables: position x_{t}, velocity v_{t}, thrust u_{t}.
- Simplified model of the dynamics:

$$
x_{t+1}=x_{t}+v_{t} \quad \text { for } t=0,1, \ldots, T-1
$$

- We must choose $u_{0}, u_{1}, \ldots, u_{T}$.
- Initial position and velocity: $x_{0}=0$ and $v_{0}=0$.
- Waypoint constraints: $x_{t_{i}}=w_{i}$ for $i=1, \ldots, k$.
- Minimize fuel use: $\left\|u_{0}\right\|^{2}+\left\|u_{1}\right\|^{2}+\cdots+\left\|u_{T}\right\|^{2}$

Example: hovercraft

First model: hit the waypoints exactly

$$
\begin{array}{rll}
\underset{x_{t}, v_{t}, u_{t}}{\operatorname{minimize}} & \sum_{t=0}^{T}\left\|u_{t}\right\|^{2} \\
\text { subject to: } & x_{t+1}=x_{t}+v_{t} & \text { for } t=0,1, \ldots, T-1 \\
& v_{t+1}=v_{t}+u_{t} & \text { for } t=0,1, \ldots, T-1 \\
& x_{0}=v_{0}=0 & \\
& x_{t_{i}}=w_{i} & \text { for } i=1, \ldots, k
\end{array}
$$

Julia model: Hovercraft.ipynb

Example: hovercraft

Second model: allow waypoint misses

$$
\begin{aligned}
\underset{x_{t}, v_{t}, u_{t}}{\operatorname{minimize}} & \sum_{t=0}^{T}\left\|u_{t}\right\|^{2}+\lambda \sum_{i=1}^{k}\left\|x_{t_{i}}-w_{i}\right\|^{2} \\
\text { subject to: } & x_{t+1}=x_{t}+v_{t} \quad \text { for } t=0,1, \ldots, T-1 \\
& v_{t+1}=v_{t}+u_{t} \quad \text { for } t=0,1, \ldots, T-1 \\
& x_{0}=v_{0}=0
\end{aligned}
$$

- λ controls the tradeoff between making u small and hitting all the waypoints.

